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NONLINEAR ESTIMATION

Introduction

During recent years, there has been considerable interest in the possi-
bility of using only current year data as a basis for developing yield fore-
casts during the growing season. To this end, efforts have been directed
toward developing "within year'" forecast models for which the pertinent pa-
rameters can be estimated with acceptable precision from current season data
only. Current plans include continuing this research.

Within year models could be a valuable supplement to the '"between year'
models presently being used in yield forecasting. Between year models as-
sume relationships that are estimated to exist between independent and depen-
dent variables during a base period (usually a three year period preceding
the current growing season) are applicable to the current year. The perfor-
mance of these models has been closely related to the degree that this assump-
tion of applicability from a base period to the current year has been violated.
The need for supplemental information from a within year model is most criti-
cal in those years when growing conditions differ greatly from those of the
base period.

In addition to providing supplemental information to an ongoing yield
forecast system, within year models could be very useful when developing a
forecast system for a new crop. Usually 3-S5 years of information must be
gathered before a reliable between year model can be implemented. It is ex-
pected that a within year model could be developed in a shorter period of
time since a base period is not needed.

Given the need for a within year forecast model, the question becomes

whit form this model might take and how its parameters can be estimated.



The approach taken thus far with respect to grain crops is that the model
should describe the process of kernel dry matter accumulation. With this
in mind, an examination of alternative models lead to a special case of what

is sometimes called the Logistic Growth Model. Algebraically, this model

can be expressed as
1

y=_ "~ 5, a>0,B8>0,0<p<1l,

a+Bot

and it can be represented as shown in the figure below.

% time (¢)
This model has been used in several applications, including population

growth studies. In population studies p is sometimes assumed to be slight-
ly larger than unity.

In applying this model to kernel dry matter accumulation for an in-
dividual plant, we are hypothesizing that accumulation begins slowly at
first, increases at an increasing rate for a period of time and then in-
creases at a decreasing rate until a maximum (asymptotic) value is reached.
This asymptotic value would be the kernel dry matter at harvest.

The point in the phenological development of a plant coinciding with
time equal to zero should approximate as closely as possible the inital

stages of kernel development (e.g., silk emergence in corn or flowering in

wheat).

The value of y at t = 0o is _ 1 , since p? = 1. The asymptotic
a + 8
value of y is 1 and is attained as t becomes large since p' and thus 8ot
a




tends to o with o < p < 1. Assuming the logistic growth model is the appro-
priate model, the question remaining is whether or not the parameters a, B
and p can be estimated satisfactorily and early enough in the growing season
to provide a useful yield forecasting system.

"The objective of this paper is to describe a method for estimating the
parameters of a nonlinear model (such as the logistic growth model) based
on sample data and to provide examples. Also, two variations of this model
which allow for relaxing certain model assumptions concerning residuals are
explored.

Estimation

The growth model we are considering is of the form

1
Yi = ————— +u. ,i=1, ..., n
i a*Bpti i’ ’ ’

where Y is a specific value of the dependent variable, t_1 is the corre-
sponding value of a time variable and u, is the disturbance term for the

im observation. Since this model is intrinsically nonlinear in the unknown
parameters a, 8 and p, the method of least squares is not directly applicabde
for fitting it to sample data.

One method for estimating the parameters of a nonlinear model is the
linearization (or Taylor series) method.* In general, we begin by hypothe-
sizing a model of the form

yi=f(_)_(i’(_3) *u;, ,i=1,....,n
where yi is the value of the dependent variable, Xj = (Xil, Xiz’ ceey Xik)
is the vector of k independent variables and u, is the disturbance term for
the ilz-}l observation and 9° = (0,, 02, ..., ep) is the vector of p unknown

parameters to be estimated.

*Source: N. R. Draper and H. Smith: Applied Regression Analysis, Wiley, New
York, 1966, Chap. 10.




Beginning with an initial estimate of the parameters, g; = (olo, Opp 5e-
ces opo), if we carry out a Taylor series expansion of f Q'(‘i’ @) about the
point o and disregard the terms beyond the first derivatives, we can say that,
approximately, when 0 is close to 9_0 R
P
L af (X 9)

yi-'-f()gi,g_o)+j=1 -e)+u,1=-1...,n.

All information available from theory and previous survey results con-
cerning the population being sampled would be used in estimating initial

values for the parameters. We can re-write the equation above as

.| XS, 9 (X, O
Vit EQ@u o)t | cel—elow[.___; ]cez-e2°)+---
2
)

=0

o)

(X, 9)
+ 1 ® - )Y+u.,,i=1, .., n
30 P po 1
p
=0

which can be expressed in matrix notation as
Y-f)=1 +U
X-£)=2 1y +U

where

- £X, 90) (91 " %% !ul

Yy - €0, 9) 1o : o 5,

[
- f(X, 0 o - u
)’n (‘—n —o) \p Opo \n




2£(X, , ©)
801 302 .59p
z - =9 ] © o 8=p
o] o o . - "o
&, 9 - :
391 . !
‘ Q = p_ - N
[o)
i (X , X , 0
_n _) 4 @ - - . [] a . - - hd L] - -h’ _)
30, 30
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0 =0 09=20
-_— -0 — -0

The parameter vector, X can then be estimated by applying ordinary least
squares to obtain

=@ 2)! 1°(¥-f

1= @)t Q- £)

where

g2
n
@
N
—
1
(o]
N
[o]

0 - 0
\Pl P"/

The vector Y,will minimize the error sum of squares

2 ‘
p [0 ] ,
I (0. - 0;) /
j=1 30, I [
— /]
e=9 !

[o}

with respect to the (OJ. " 0jo) »J =1, ..., p.
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Using Eq = (911, O 4 ceny Opl) a8 a revised estimate of the unknown

21
parameter vector Q° = (el, 62, cees Op), we can place the Ojl’ j=1, ..., p
in the same role as the Gjo’ j =1, ..., p in the equations above, repeat

the process of deriving the least squares solution and obtain another re-

vised estimate 0 = (0 , 0 , ..., 0 ).
-2 127 22 p2

This iterative process is continued until the solution converges. The

criterion for convergence might be

0 -9
J(k+l)  jk < §,3=1, ..., P,
0

jk

or alternatively

Ss(i(kd)) ] Ss(lk) < 5
3S Gk] 2

in successive iterations k and (k+1), where &, or §, would be predetermined

tolerance values.

Note that with the terminating kEh

iteration, the SS(ik) will be the
minimum attainable to the accuracy imposed by the termination criterion
chosen. One should be aware of the effects of this limitation. For example,
even though the error term u of the nonlinear model is assumed to be normally
distributed, § is not normally distributed, 62 = SS(y )/(n-p) is not an
unbiased estimate of ¢2 and confidence intervals const&ucted for population
parameters are only approximate. Of course, the more closely the sample

data fits the hypothesized model and the smaller the termination criterion,

the better the approximation will be.

Example (Grape Data)

The example that follows will illustrate the iterative process. Data

used were collected as part of a study of grape growth characteristics in



Michigan during 1962. Although data collection was not designed for fitting
the results to a growth model, the calculations will hopefully serve to

clarify the linearization procedure.

Time Since Berry

Weight per Grape Formation Began
(grams) (days)
1.13 6
1.04 6
1.10 6
1.06 6
1.15 6
1.03 6
1.56 11
1.61 11
1.42 11
1.96 21
1.31 21
1.59 22
2.09 22
1.72 22
1.85 22
1.75 22
2.27 22

The model hypothesized is
= ! + i=1 17
Y5 o, i=1, ...,

01 + 0, O3 ti
where Yi is the weight per grape, t; is the time since berry formation began
and u; is the disturbance term for the i-t'}-1 observation and @;, 6,, and @j
are the unknown parameters to be estimated.

Initial estimates of the parameters to be used are

0, 0.27

0 =4 025 | = 10.73
[¢)

030 0.90

An initial estimated error mean square will be computed to compare with that

which will result after the first iteration.

— - 2
2= 1 ™ [y, - £, 9)]
°  np i=1 L= e




2
= ] 1.13 - 1
17-3 6
27 + .73 (.90)
. S + 12.27 - 1 2
22
.27 + .73 (.90)
= 0.85276

1.04 - 1.

6
27 + .73 (.90_)__J

Computations for the first iteration are as follows:

v, - £(t,, 0) 1.13 - 1 {—0.38987
" o 6
27 + .73 (.90)
Y-f = [ y,- £(t,, 8) =] 1.04 - 1 = | -.47987
- 7o . o ' 6 .
. .27+ .73 (.90) -
y - £(t_, 0) \2.27 - 1 -0.65493
n n -o 27
.27 + .73 (.90)
/ 21(ty, 0 2£(t)> © ¥ (ty, 9
30, 20, 30,
e=9 . &=8 2= 9'o
_Z_ = . ] Q
[o)
of(t, 5, O of (5, ® af(t17, 9)
30 20, 30,
=0 =@ e=9
2=9 .



u?

-1 -.90)° -6 (.73)(.90)°
6. ° 6,° 6
[.27 + .73 (.90))] [.27 + .73 (.90)%] [.27 + .73 (.90)°]
- . L] 21
-1 2 -(.90) 222 (.73)(.90)
VA
[.27 + .73 (.90)%2] [.27 + .73 (.90)%4] [.27 + .73 (.90)%4
~2.31000 -1.22763 -5.97445
-8.55527 -0.84250 ~15.03391

= - -1 - -
2yl oz a-f)

—o

90.03984 19.66104 189.70704 12.47068
1238.66071 189.70704 2412.96196 163.21489

= 0.21683 = 021 - 979
-0.04751 031 - 03

011 011 - 90 o010 0.19016 0.27 0.46016
= 921 = 021 - 920 + 920 = 0.21683 +10.73 ={ 0.94683
031 03 - O 930 -0.04751 0.90 0.85249

2
n
- 3%5' - [:?5 - £y @ii]

- 1 L P

( 652.99429 90.03984 1238.66071) -1 ( 85.44007)

1

22
.46016 + .94683 (.85249) |

= 0.08297




1

1f we set 6§ = 0.0005, the computation

indicates the process should be carried at least one more iteration.

0.08297 - 0.85276

results of five iterations are summarized below.

0.85276

1v

= 0.90270 > ¢

The

Iteration él 62 63 value 02reIative change
0 0.27000 0.73000 0.90000 0.85276 -e------
1 0.46016 0.94683 0.85249 0.08297 0.90270
2 0.53872 1.27950 0.80516 0.04713 0.43196
3 0.53990 1.52010 0.79161 0.04646 0.01422
4 0.53996 1.55280 0.79098 0.04643 0.00065
5 0.53996 1.55283 0.79099 0.04643 0.00000

The fifth iteration results in a relative change in the estimated error mean
square far less than § and thus the process is terminated.

For the fifth iteration,
~ _1 .

Y = (27 Zy) Z, O0-£)
0.02457 0.55101 -0.05254 -0.00056
= 0.55101 31.57812 -2.48136 -0.00003
-0.05254 -2.48136 0.20912 -0.00052
. 0.00000 o1s - 014
15 = 0.‘00003 = 025 - OZ“&
0.00001 035 - 0,/ » and

05 0.00000 0.53996 0.53996
95 =] 06, = { 0.00003 + 1.55280 1.55283
035 0.00001 0.79098 0.79099

An estimate of the variance-covariance matrix for the estimated parameters

is given by

cov (0) = o2 (2, Z)71 = 0.04643 (Z; gh)'l

0.00114 0.02558 -0.00244
= 0.02558 1.46617 -0.11521
-0.00244 -0.11521 0.00971
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The accuracy of the parameter and variance estimates with respect to an
exact fit to the sample data is limited by lack of precision imposed by the
termination criterion used.

The plot on the following page shows the data being fitted (dots) and

the function based on the estimated parameters for each iteration. The 1
parameter estimates are so nearly the same for the second through the {ifth |
iteration that only a portion of the second iteration appears and the third

and fourth iteration results are completely obscured.

Example (Corn Data)

An analysis of time related growth models in forecasting components of
corn yield is presently being conducted by the Yield Forecasting and Es-
timation Section. Data for this study were collected from three purposely
chosen fields in Iowa during the 1973 growing season and from a systematic
sample of 10 fields in the Central Crop Reporting district of Iowa during
1974. Current plans are to continue this research in 1975.

As one possible growth model for the 1974 project, it was assumed that
the independent time variable was days since silk emergence as of the time
a corn plant was sampled. The dependent variable was assumed to be the
-mean dry grain weight (grams) of all ears per plant for all plants with
the same associated value of time and drawn from the same sample field.
Days since $ilk emergence for a plant was taken to be that of the primary
ear. It was assumed the residuals in this model are independently distri-

buted with mean zero and a constant variance, ci. That is,

EU)= 0 and
- = 2
E U UM ouIn
The model 1
y. = + u, , i=1, ,

i—a*‘BpEi i ey
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with Yy and ti defined as described in the preceding paragraph was fitted
to the sample data as it was available up through August 15, September 1,
September 15, October 1, October 15, and the end of the growing season.
This incrementing of the data was done to provide an indication of how
early in the growing season the model could be estimated and how the
estimate changed as additional information became available. To evaluate
the estimated model, the asymptotic value for each of the six calendar
date cut-offs was compared with an estimate of the mean dry grain weight
per plant at harvest for the 10 sample fields combined.

The nonlinear least squares option of the Biomedical Computer Programs
(BMD) package was used to estimate the model parameters for each of the
six cut-offs. This computer program uses a variation of the lineariza-
tion method. Table 1 shows the estimated value for each parameter, the
estimated relative standard error for each estimated parameter, the esti-
mated asymptotic value and the estimated asymptotic value as a percent of

the estimated grain weight per plant at harvest for each of the six cut-offs.

Table 1 1im y¢,
t. > » 1
1
cut- . . N 0., O.,. SN est'ed % of est'ed
of f n a 8 P af & B/B olb _value _hv wt,
alrr

ebs. 278 .0061541 .15655 .91866 3.59 34.36 0.98 162.49 106.3
10/15 256  .0058769 .15263 .92037 3.85 31.85 0.90 170.16 111.4
10/1 197 .0053225 .16184 .91977 5.66 29.67 0.90 187.88 123.0
9/15 128 .0063958 .40740 .88626 6.39 38.86 1.34  156.35 102.3
9/1 70 .0063116 .69776 .86809 15.59 46.90 1.91 158.44 103.7
8/15 19 .016119 14.127 .74074 18.90 134.18 6.96 62.04 40.6
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These results show considerable variability in the asymptotic value among
the six cut-offs. Also, these data indicate little success may be expected,
in estimating a reliable model bascd only on data collected up through mid-
August. The plots on the pages that follow show the points being fitted
and the estimated model function for each calendar date cut-off.

A Heteroscedastic-error Model

Having completed the fitting of the hypothesized growth model (1)
to the six subsets of corn data, an attempt was made to evaluate how well
the underlying assumptions concerning the residuals had been met. An
examination of the plots showing the fitted model and data points for each
cut-off provides an initial indication that there may be a statistically
significant relationship between the variation in the residuals and the
independent variable, time. The plots show the estimated residuals be-
coming larger for large values of time. In other words, we may be violat-
ing the assumption

E (u‘;) = oi

for all i. This condition is commonly referred to as heteroscedasity.

To pursue this possibility, a method suggested by Glejser* was used.
Although this procedure was suggested in connection with linear models,

its application to a nonlinear model does not seem inappropriate. Accord-

ingly, we begin by assuming that each residual, u;, can be expressed as

ui =V, f(ti)’ i=1l,..., n

where ] is a random variable with

E(Y_)-Oand
E(VV)= a2 1.
vy v L

* H. Glejser, "A New Test for Heteroscedasity,' Journal of the American
Statistical Association, vol. 64, pp. 316-323, 1969.
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Further, it is assumed that the form of the function f is known, but at
least one of its parameters is unknown. It then follows that
E (ui) = | [\ri f (ti)]
= { (ti) E (v)
=0, i=1, ..., n ,
E (ui) = [£ (ti)]z 0'5 s, i=1, ..., n , and
E [v; £ (t;) v; £ (tj)]
f (ti) f (tj) E (Vi vj)
=0, i#j.

Instead of the original assumption

E (ui uj)

A = <2
EUU) =021
it is now assumed that

Y = 2
E (U UM o’ @

where
£ ]2 0 -+« « v o b 0
0o 1 &)’ 0
Q = T
) .y
0 0+« o . LIE )]
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It can be shown that if the assumption of heteroscedasity holds true,

using model (1) will give less efficient estimates of the parameters. That

is, the estimated relative errors of the parameters will be umnecessarily

large. Applying the method of generalized least squares at each iteration

of the linearization procedure, an estimate of Yol would be given by

v o= @ atz) lzal@ -f
Yo T &2ty lzet 0L £)
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Alternatively, the same estimate of lk+1 would be obtained if the mod:l

1 Yi- 1 ; 1 + 1 ui’ i"l, csay N
{ (t) -F(tlj a + B8 pTi. f ‘tlj (2)

1

were fitted to the sample data using ordinary least squares at each
iteration. Either procedure can be used with BMD. Note that the residuals
of model (2),

ho have the desired characteristic of being independently distributed
with mean zero and a constant variance, cs.

Since neither the function f nor its parameters are known, they must
be estimated. Following the procedure outlined by Glejser, the absolute
value of the estimated residuals obtained from fitting model (1),| ﬁil ’
i=1, ..., n, were regressed on an estimated function of time. An exam-
ination of a plot of the absolute value of the residuals against time

suggested the function

' ﬁil = f (ti) =Tt t; + ey, i=1, ..., n.
Since the estimated value of T, was not significantly different from zero
for any of the six cut-off dates, the function

Iai| =f(ti)=fti+ei,i=1,...,n

was used. Estimates of t were significant for all cut-offs. The estimates
for t for each cut-off date and the results of fitting model (2) using

estimates for f (t) are shown in the Table 2.
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Table 2
lim y
ti-)-mti
cut- . . . . o. . O. . o, . est'ed % of est'ed
off mn T o 8 p afa __B/B __%ég_ value  hr. wt.
& &
all

obs. 278 .491552 .0068499 .50744 .88328 2.99 23.22 0.79 145.99 95.5
10/15 256 .481948 .0066370 .47529 .88618 3.22 22.26 0.76 150.67 98.6
10/1 197 .467133 .0063319 .50529 .88455 3.87 22.03 0.76 157.93 103.4
9/15 128 .447382 .0070626 .76550 .86517 5.32 25.63 1.00  141.59 92.7
9/1 70 .354731 .0069929 .95989 .85613 12.07 29.70 1.33 143.00 93.6
8/15 19 .207561 ,017680 28.315 .71327 16.90 128.11 6.89 56.56 37.0
A comparison of Tables 1 and 2 shows the estimated relative error of the
estimated parameters is now smaller as expected. The asymptotic values of
the estimated heteroscedastic-error model are at a somewhat lower level than
those of model (1). Perhaps the most attractive aspect of the model (2)
results is that the asymptotic values are less variable among the six cut-
offs. Note the October 1 value is substantially more in line with the other
cut-offs than before. The August 15 value is still far from being realistic.

An Autocorrelated-error model

Further examination of the plots from model (1) indicated the residuals
may not be independently distributed. Specifically, for small ;ralues of
time most of the data points lie below the function, particularly for the
last three cut-offs. This led to hypothesizing a third set of assumptions
concerning the residuals.

Let us assume the residuals in model (1), uy, can be expressed as
u; = vy f (ti), i=1, ...., n

i
same as for the heteroscedastic-error model, but further assume the vy



follow a first-order autoregressive scheme*

wherc [A] < 1 and the € satisfy the assumptions

E (ei) =0
o = 2 =
E (ei Ei+s) o s=0
=0 , s#0
for all i. It then follows that

Vi = A Viap *t €;
=\ (A vV 2 61-1) + €5
= 2
es*res g v A% e ot
Therefore,
E(Vi) = E (Ei) + 2 E (ei_l) +A2 E (ei_z) o iiiraaes
= 0

since E (ei) = 0 for all i. Accordingly we can write

E (vi) = E[(e, +2e, + \Ze o+ o) ey *Ae, A, * )]

1-1 i-2 1-1 i-2
= E (e2 + 2 )e.€, + 2 2%.€, + A2¢?
1 l1i-1 11-2 1-1
3 4.2
* 2%, €i 2 *AEf L * cees)
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*J. Johnston, Econometric Methods, McGraw-Hill, New York, 1963, pp. 244-246.
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- o2
€

2
€

E (c§)+ 2\ E (eiei_l) + 212 E (eiei_z) + 22 F (e%_l)

3y YE (2 )+ ....
£2030 (e, gy JHAE(E ) * )

+ 22492 + A% o2+ .,
€ €

(L+22 + A% +....0) o

1
for all 1i.

E(vivs {)

A

2

Also,

E

i<l 1-2 i-1 i-2 i-3

.+ +2a2e. o+ . )], ot Ae,
{[ei * A(el‘l Ei—z i-3 ) 1-1

+
Lle.€. . + Ae.e . *+ A%e.e, + ...t (ei_ A€

i

Y

2 (e.€. ) % cevannne
(Eiei-l) + 2 E (eiei_z) + ) (51 i3

‘ ‘ 2
+)\ E (_Ei_l + Xei_z + )\281_3 + .-..)

2
‘ + e, + A2 +oial)
A E (Ei—l i-2 i-3

2 F
A [E (2 ) +2xE (g5 Ei-z) + 22 E (eiei_z)
i-1

2 2 3 + lf}::‘“g 4. ..
+ A% E (Ei_z) + 227 E (ei_zei_a] A (:1_3) ]

A (02 +22 oi +A% 02+ ...00)
€ €

L 2
A (L o+ A2 M) og

2
A oy
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= E[(e, + A€, + A%, *+ o), tre,  F A2¢ + ...0]
1



|

Similarly,
E (v.v. ) =1Z%gq?
ii-2 v

and in general,
> =% 42
E (Vivi-s‘) A oy

Returning to the residuals, u., from model (1), we have

E (ui) = E[\ri f(ti)]
= £(t;) E(vy)
=0
for all i, and
E (u2) = E (v, [£t)]1%)
i 1 i
= [£(t))1% E(v)
= [£(t)]2 o2
E (uiui-s)= E[vi f(ti) Vi-s f(ti_s)]

= £(t;) £(t; ) E(Vivi-s)
- S 42
f(ti) f(ti-s) A% og
Summarized in matrix notation, we have

F@UU”) =0a @
Uus = o

where

/ £(t) £(t) A [£(t)]1 £(t,) £(ts) A

F(t2) £(£3) A2 £(t,) £(t5) A [£(t5)]2

£(ty) £(e) AV E(E,) £(£) AT £(ty) f(tn)“‘3 voe o

and

[£01%  £(t) E(t) A £(t)) £(ta) A2+ oo o £(1)) £t ) A"

26

-1

£(t) £(t) \n-?

£(ty) £e) A

(£t )1 /
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( 1 = A 0 . - L] s 0 0 0

(€)% £(t,) £(t,)

- A l+)\2 - A 0 0 0

£(t)) £(t)  [EE)1° £(ty) £(ty)

0 - A 1+22 0 0 0
L] 2 [
. £(t,) £(t,) [£(t )] .
0 0 0 ® o a - )\ 1 + kz ~ A

2
CHI I {CRIP IS c{CRID LI {CHIDFI (I

0 O 0---0-..0 ..A 1

£(t,.) £e) (e 1? |

It can be shown that if the assumption of autocorrelation holds true, using
model (2) will underestimate the true sampling variance of the estimated para-
meters. As in the case of the heteroscedastic-error model, we can apply the

method of generalized least squares at each iteration of the linearzation

procedure and obtain an estimate of y by
“k+1
4 g2yt gz g
1 0= (2 altz)y 20 gt (x-f£)
k- Tk X I ¢

S U R
However, this approach cannot be used with BMD when @~ is not a diagonal
matrix. Therefore, we mist use a transformation matrix T such that a new

model will be formulated that can be fitted by ordinary least squares and




.
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that will have a scalar dispersion matrix. That is,

E@UU T) =01

It can be verified by multiplying out that if Il is defined as

V1-X2 0 0o ... o 0 0 0
[ 1j
- A 1 0 =+« 0 0 0
EEE oY
I = 0 - A 1 . 0 0 0
. It fty) .
0 0 0 o o= A 1 0
t (tn_ 2) t (tn_ 1)
0 0 0 . 4 i 0 - 1
£, ) Et)
then,

E(T UU"T) =02 I
- 1 € n

The result of applying this transformation to the original model is

/1-)2 y, = V1-)2 —--—1—-———- + /i-AE u
e, 1 10
t) ft) o +800 £(t1)
and
Y3 A - 1 1 : A 1
Fey ~ £, )V £t a+seti £(t; ) a+® oti
Yy A Yo-1,
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To verify that the residuals of this autocorrelated-error model are in-

dependently distributed with mean zero and have a constant variance, let
th
T be the residual for the i~ observation. Then,

122

f(tl)

u
E(r) = !

f
1

s (2
E (rl)

"
tm
H
g A2
— | B
&
L
~

[]
VY
[
>
W
<30

u. - A 2

i Uy
E (r%) = | f(ti) f(ti'1)
1 .

uf - 2uj A ug, 4 A2

2 2
[EED1° £ £(.) EAN)

= g2 - 21202 + A2 g2
v v v

= (1a2) o2
v

= g2 , i=2, ..., n
€
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E (rirl) - E{[ 1El f(t ) :}
i 1

= 'I-AZ u, ul - AVI‘,\Z u. u
SR AR AR

= A -2 A1t 02 - A /T2 pi2 o2
Vv
A"
=0, i=2, wwey N
: u.
E (17 ) = E io- u; - A Yi-s-1
t, f(t T f(t
= E Ui Y.g - o Y Y49 - k Uj_1 Uj-g
f(tl) e, D EE) £y ) FCe5 ) £(E; )
+ a2Y Y o,
f(t. t(t
( 1-1) (i-s—l)
= A5 g2 - a AStl g2 . 3 ASTl 52 43235 o2
v v Y v
= 0, i=2, ..., n

Thus, the residuals, ;s have the desired characteristics.

Having formulated this autocorrelated-error model which retains the
assumption of heteroscedasity, the next step was to test for first-order
autocorrelation for each of the six cut-offs. The test used was the von
Newnann ratio.* This is a large sample test and is made by comparing the
computed value obtained with a pre-selected critical region from the normal
distribution with the appropriate mean and variance.

For each cut-off the von Neumann ratio. §2/s2. was computed by

*J. Johnston, op. cit., 1963, p. 250.
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where R

Vi Ty / f(ti) , i=1, ..., n.

The expected value and variance of §2/s? are given by

62 2n
E—-—— = ———
(ﬁz) n-1

v (Q;) _ 4n? (n-2)

s @+1) (-1)°

Au cstimate of A for each cut-off was obtained by

which is a regression of the vy on v, |

the von Neumann tests and the estimates for A are summarized in Table 3.

with no intercept. The results of

Table 3
computed Estimated 95%

cut-  von Neumann confidence interval N
off ratio E(82/s%) V(§2/s?) + 1limits for &2/s? A
all '

obs. 1.70 2.00722 0.01439 (1.77, 2.24) 0.169891
10/15 1.74 2.00784 0.01562 (1.76, 2.25) 0.152777
10/1 1.53 2.01020 0.02030 (1.73, 2.29) 0.253208
9/15 1.76 2.01575 0.03125 (1.67, 2.36) 0.126061
9/1 1.99 2.02899 0.05714 (1.56, 2.50) 0.021710

8/15 1.95 2.11111 0.21046 (1.21, 3.01) 0.053826
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For those cut-offs where the computed von Neumann ratio lies outside the
estimated confidence interval, we can, based on this sample data, reject the
null hypothesis of non-autocorrelated residuals in favor of the hypothesis
of positive first-order autocorrelation. Table 3 shows there is evidence of
autocorrelation for the last three cut-offs, although it is only for the
October 1 cut-off that the evidence is particularly convincing. For the
first three cut-offs, we cannot reject the null hypothesis of non-autocorre-
lated residuals. Accordingly, model (3) was fitted to the last three cut-
offs.

As is commonly done, the first observation was deleted in fitting the

model. The results are presented in Table 4.

Table 4 :
t 11“1 myti
i
cut- . . . 0,4  Oaf 0., est'ed & of est'ed
off n o R p o B/ B value hv. wt.
all
obs. 277 .0068072 .46516 .88591 3,71 29.25 1.00 146.90 96.1

10/15 255  .0065846 .43236 .88903 3.94 27.50 0.93 151.87 99.4

10/1 196  .0062570 .45860 .88753 5.41 31,02 1.07 159.82 104.6

A comparison of Tables 2 and 4 shows the estimated relative error of
the estimated parameters for model (3) are larger than for model (2) as
expected. However, the asymptotic values changed only slightly. This is
consistent with the relatively small degree of estimated autocorrelation as

reflected in the small values &f the estimated A's.



Sumary

We have shown the fit of an intrinsically nonlinear model to sample data
by the linearization method is only an approximation of an exact fit in the
sense that an absolute minimum of the errcr sum of squares is not attained.
In spite of this limitation, the results of its use in fitting the growth
model appear satisfactory.

The results of the heteroscedastic-error model are encouraging. How-
ever, the assumption of a first-order autoregressive scheme is not particu-
larly convincing. Further investigation of alternative autocorrelation

schemes might be warranted.
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